Finding stories in data using exploratory data analysis (EDA) is all about organizing and interpreting raw data. Python can help you do this quickly and effectively. In this course, you’ll learn how to use Python to perform the EDA practices of discovering and structuring.



Explore Raw Data
Dieser Kurs ist Teil von Spezialisierung für Google Data Analysis with Python

Dozent: Google Career Certificates
TOP-LEHRKRAFT
Bei enthalten
Was Sie lernen werden
Identify ethical issues that may come up during the data “discovering” practice of EDA
Using the PACE workflow to understand whether given data is adequate and applicable to a data science project
Recognize when and how to communicate status updates and questions to key stakeholders
Kompetenzen, die Sie erwerben
- Kategorie: Data Import/Export
- Kategorie: Data Processing
- Kategorie: Statistical Analysis
- Kategorie: Data Synthesis
- Kategorie: Data-oriented programming
Wichtige Details

Zu Ihrem LinkedIn-Profil hinzufügen
September 2025
4 Aufgaben
Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.

Erweitern Sie Ihre Fachkenntnisse
- Lernen Sie neue Konzepte von Branchenexperten
- Gewinnen Sie ein Grundverständnis bestimmter Themen oder Tools
- Erwerben Sie berufsrelevante Kompetenzen durch praktische Projekte
- Erwerben Sie ein Berufszertifikat zur Vorlage

In diesem Kurs gibt es 4 Module
Data professionals must understand data sources, file formats, and responsible parties during exploratory analysis. In this module, you will learn when to contact data owners for questions or issues, how to import data using Python and perform EDA using basic functions in Python.
Das ist alles enthalten
5 Videos3 Lektüren1 Aufgabe3 Unbewertete Labore
EDA discovery uses targeted questioning to identify data gaps and missing information. In this module, you will learn how to formulate hypotheses, manipulate datetime strings and create bar graph visualizations.
Das ist alles enthalten
2 Videos1 Lektüre1 Aufgabe1 Unbewertetes Labor
Structuring is an EDA practice for organizing data to learn more about it. In this module, you will learn different types of structuring methods, pandas tools for structuring datasets, and interpret histograms to understand data distributions.
Das ist alles enthalten
2 Videos2 Lektüren1 Aufgabe3 Unbewertete Labore1 Plug-in
Review everything you’ve learned and take the final assessment.
Das ist alles enthalten
1 Lektüre1 Aufgabe
Erwerben Sie ein Karrierezertifikat.
Fügen Sie dieses Zeugnis Ihrem LinkedIn-Profil, Lebenslauf oder CV hinzu. Teilen Sie sie in Social Media und in Ihrer Leistungsbeurteilung.
Dozent

von
Mehr von Data Analysis entdecken
Google
Google
Warum entscheiden sich Menschen für Coursera für ihre Karriere?





Neue Karrieremöglichkeiten mit Coursera Plus
Unbegrenzter Zugang zu 10,000+ Weltklasse-Kursen, praktischen Projekten und berufsqualifizierenden Zertifikatsprogrammen - alles in Ihrem Abonnement enthalten
Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.
Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online
Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.
Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.
Häufig gestellte Fragen
Organizations of all types and sizes have business processes that generate massive volumes of data. Every moment, all sorts of information gets created by computers, the internet, phones, texts, streaming video, photographs, sensors, and much more. In the global digital landscape, data is increasingly imprecise, chaotic, and unstructured. As the speed and variety of data increases exponentially, organizations are struggling to keep pace.
Data science is part of a field of study that uses raw data to create new ways of modeling and understanding the unknown. To gain insights, businesses rely on data professionals to acquire, organize, and interpret data, which helps inform internal projects and processes. Data scientists rely on a combination of critical skills, including statistics, scientific methods, data analysis, and artificial intelligence.
A data professional is a term used to describe any individual who works with data and/or has data skills. At a minimum, a data professional is capable of exploring, cleaning, selecting, analyzing, and visualizing data. They may also be comfortable with writing code and have some familiarity with the techniques used by statisticians and machine learning engineers, including building models, developing algorithmic thinking, and building machine learning models.
Data professionals are responsible for collecting, analyzing, and interpreting large amounts of data within a variety of different organizations. The role of a data professional is defined differently across companies. Generally speaking, data professionals possess technical and strategic capabilities that require more advanced analytical skills such as data manipulation, experimental design, predictive modeling, and machine learning. They perform a variety of tasks related to gathering, structuring, interpreting, monitoring, and reporting data in accessible formats, enabling stakeholders to understand and use data effectively. Ultimately, the work of data professionals helps organizations make informed, ethical decisions.
Large volumes of data — and the technology needed to manage and analyze it — are becoming increasingly accessible. Because of this, there has been a surge in career opportunities for people who can tell stories using data, such as senior data analysts and data scientists. These professionals collect, analyze, and interpret large amounts of data within a variety of different organizations. Their responsibilities require advanced analytical skills such as data manipulation, experimental design, predictive modeling, and machine learning.
Weitere Fragen
Finanzielle Unterstützung verfügbar,