In this course, you'll explore loops, which repeat a portion of code until a process is complete. You’ll learn how to work with different kinds of iterative or repeating code, such as for loops and while loops. Then, you'll explore strings, which are sequences of characters like letters or punctuation marks. You’ll learn how to manipulate strings by indexing, slicing, and formatting them.



Loops and Strings
Dieser Kurs ist Teil von Spezialisierung für Google Data Analysis with Python

Dozent: Google Career Certificates
TOP-LEHRKRAFT
Bei enthalten
Was Sie lernen werden
How to manipulate strings using techniques such as concatenating, indexing, slicing, and formatting
Purpose and logic of iterative statements such as for loops and while loops
Be able to summarize the syntax of the range() function
Kompetenzen, die Sie erwerben
- Kategorie: Data Structures
Wichtige Details

Zu Ihrem LinkedIn-Profil hinzufügen
September 2025
4 Aufgaben
Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.

Erweitern Sie Ihre Fachkenntnisse
- Lernen Sie neue Konzepte von Branchenexperten
- Gewinnen Sie ein Grundverständnis bestimmter Themen oder Tools
- Erwerben Sie berufsrelevante Kompetenzen durch praktische Projekte
- Erwerben Sie ein Berufszertifikat zur Vorlage

In diesem Kurs gibt es 4 Module
You'll explore loops, which repeat a portion of code until a process is complete. You’ll learn how to work with different kinds of iterative or repeating code, such as while loops.
Das ist alles enthalten
3 Videos1 Lektüre1 Aufgabe3 Unbewertete Labore
You'll explore for loops, another kind of iterative or repeating code.
Das ist alles enthalten
2 Videos1 Lektüre1 Aufgabe2 Unbewertete Labore
You'll explore strings, which are sequences of characters like letters or punctuation marks. You’ll learn how to manipulate strings by indexing, slicing, and formatting them.
Das ist alles enthalten
3 Videos2 Lektüren1 Aufgabe2 Unbewertete Labore
Review everything you’ve learned and take the final assessment.
Das ist alles enthalten
1 Lektüre1 Aufgabe
Erwerben Sie ein Karrierezertifikat.
Fügen Sie dieses Zeugnis Ihrem LinkedIn-Profil, Lebenslauf oder CV hinzu. Teilen Sie sie in Social Media und in Ihrer Leistungsbeurteilung.
Dozent

von
Mehr von Data Analysis entdecken
Coursera Project Network
Coursera Project Network
- Status: Kostenloser Testzeitraum
University of California San Diego
- Status: Kostenloser Testzeitraum
Warum entscheiden sich Menschen für Coursera für ihre Karriere?





Neue Karrieremöglichkeiten mit Coursera Plus
Unbegrenzter Zugang zu 10,000+ Weltklasse-Kursen, praktischen Projekten und berufsqualifizierenden Zertifikatsprogrammen - alles in Ihrem Abonnement enthalten
Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.
Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online
Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.
Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.
Häufig gestellte Fragen
Organizations of all types and sizes have business processes that generate massive volumes of data. Every moment, all sorts of information gets created by computers, the internet, phones, texts, streaming video, photographs, sensors, and much more. In the global digital landscape, data is increasingly imprecise, chaotic, and unstructured. As the speed and variety of data increases exponentially, organizations are struggling to keep pace.
Data science is part of a field of study that uses raw data to create new ways of modeling and understanding the unknown. To gain insights, businesses rely on data professionals to acquire, organize, and interpret data, which helps inform internal projects and processes. Data scientists rely on a combination of critical skills, including statistics, scientific methods, data analysis, and artificial intelligence.
A data professional is a term used to describe any individual who works with data and/or has data skills. At a minimum, a data professional is capable of exploring, cleaning, selecting, analyzing, and visualizing data. They may also be comfortable with writing code and have some familiarity with the techniques used by statisticians and machine learning engineers, including building models, developing algorithmic thinking, and building machine learning models.
Data professionals are responsible for collecting, analyzing, and interpreting large amounts of data within a variety of different organizations. The role of a data professional is defined differently across companies. Generally speaking, data professionals possess technical and strategic capabilities that require more advanced analytical skills such as data manipulation, experimental design, predictive modeling, and machine learning. They perform a variety of tasks related to gathering, structuring, interpreting, monitoring, and reporting data in accessible formats, enabling stakeholders to understand and use data effectively. Ultimately, the work of data professionals helps organizations make informed, ethical decisions.
We highly recommend taking the courses in the order presented, as the content builds on information from earlier courses. This is the third course in a series of six courses that make up the Google Data Analysis with Python Specialization.
Weitere Fragen
Finanzielle Unterstützung verfügbar,