SAS Viya is an in-memory distributed environment used to analyze big data quickly and efficiently. In this course, you’ll learn how to use the SAS Viya APIs to take control of SAS Cloud Analytic Services from a Jupyter Notebook using R or Python. You’ll learn to upload data into the cloud, analyze data, and create predictive models with SAS Viya using familiar open source functionality via the SWAT package -- the SAS Scripting Wrapper for Analytics Transfer. You’ll learn how to create both machine learning and deep learning models to tackle a variety of data sets and complex problems. And once SAS Viya has done the heavy lifting, you’ll be able to download data to the client and use native open source syntax to compare results and create graphics.

Entdecken Sie neue Fähigkeiten mit 30% Rabatt auf Kurse von Branchenexperten. Jetzt sparen.


Using SAS Viya REST APIs with Python and R


Dozenten: Jordan Bakerman
3.847 bereits angemeldet
Bei enthalten
(15 Bewertungen)
Kompetenzen, die Sie erwerben
- Kategorie: Big Data
- Kategorie: Predictive Analytics
- Kategorie: Restful API
- Kategorie: Deep Learning
- Kategorie: R Programming
- Kategorie: Data Analysis Software
- Kategorie: Jupyter
- Kategorie: Artificial Neural Networks
- Kategorie: Time Series Analysis and Forecasting
- Kategorie: Image Analysis
- Kategorie: R (Software)
- Kategorie: Computer Vision
- Kategorie: Natural Language Processing
- Kategorie: Statistical Programming
- Kategorie: Advanced Analytics
- Kategorie: Predictive Modeling
- Kategorie: Data Processing
- Kategorie: Applied Machine Learning
- Kategorie: SAS (Software)
Wichtige Details

Zu Ihrem LinkedIn-Profil hinzufügen
23 Aufgaben
Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.

In diesem Kurs gibt es 8 Module
In this module, you meet the instructor and learn about course logistics, such as how to access the software for this course.
Das ist alles enthalten
1 Video4 Lektüren1 App-Element
In this module you learn about the analytical processing engine behind SAS Viya, the Cloud Analytic Services server. You also learn how to submit data processing commands to SAS Viya from the open source languages R and Python.
Das ist alles enthalten
10 Videos5 Aufgaben1 App-Element
In this module you learn how to use R and Python to create, optimize, and assess SAS Viya predictive models. You also learn how to use R and Python to efficiently manage the creation and assessment of these models.
Das ist alles enthalten
15 Videos4 Aufgaben3 App-Elemente
In this module you learn how natural language processing is used to analyze collections of text documents. You also learn how to turn blocks of unstructured text into numeric inputs suitable for predictive modeling.
Das ist alles enthalten
9 Videos3 Aufgaben2 App-Elemente
In this module you learn how deep learning methods extend traditional neural network models with new options and architectures. You also learn how recurrent neural networks are used to model sequence data like time series and text strings, and how to create these models using R and Python APIs for SAS Viya.
Das ist alles enthalten
13 Videos3 Aufgaben2 App-Elemente
In this module you learn how to model time series using two popular methods, exponential smoothing and ARIMAX. You also learn how to use the R and Python APIs for SAS Viya to create forecasts using these classical methods and using recurrent neural networks for more complex problems.
Das ist alles enthalten
11 Videos4 Aufgaben2 App-Elemente
In this module you learn how convolutional neural networks are used to classify images and how to use the R and Python APIs for SAS Viya to create convolutional neural networks.
Das ist alles enthalten
7 Videos2 Aufgaben2 App-Elemente
In this module you learn how factorization machines are used to create recommendation engines and how to build factorization machine models in SAS Viya using the R and Python APIs.
Das ist alles enthalten
4 Videos2 Aufgaben2 App-Elemente
von
Mehr von Data Analysis entdecken
- Status: Vorschau
- Status: Kostenloser Testzeitraum
- Status: Kostenloser Testzeitraum
Warum entscheiden sich Menschen für Coursera für ihre Karriere?




Bewertungen von Lernenden
15 Bewertungen
- 5 stars
86,66 %
- 4 stars
6,66 %
- 3 stars
0 %
- 2 stars
0 %
- 1 star
6,66 %
Zeigt 3 von 15 an
Geprüft am 19. Okt. 2021
Grateful to the instructors! Thank you for enhancing my skills set.

Neue Karrieremöglichkeiten mit Coursera Plus
Unbegrenzter Zugang zu 10,000+ Weltklasse-Kursen, praktischen Projekten und berufsqualifizierenden Zertifikatsprogrammen - alles in Ihrem Abonnement enthalten
Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.
Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online
Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.
Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.
Häufig gestellte Fragen
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you purchase a Certificate you get access to all course materials, including graded assignments. Upon completing the course, your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
You will be eligible for a full refund until two weeks after your payment date, or (for courses that have just launched) until two weeks after the first session of the course begins, whichever is later. You cannot receive a refund once you’ve earned a Course Certificate, even if you complete the course within the two-week refund period. See our full refund policy.
Weitere Fragen
Finanzielle Unterstützung verfügbar,