Zero-Shot & Few-Shot Learning is an intermediate-level course designed for data scientists, ML engineers, and AI practitioners who want to build models that perform well—even when labeled data is limited. Traditional supervised learning breaks down when examples are scarce or tasks are constantly evolving. This course shows you how to solve that problem using cutting-edge zero-shot and few-shot learning techniques.



Empfohlene Erfahrung
Kompetenzen, die Sie erwerben
- Kategorie: Prompt Engineering
- Kategorie: Unsupervised Learning
- Kategorie: Deep Learning
- Kategorie: Small Data
- Kategorie: Artificial Intelligence and Machine Learning (AI/ML)
- Kategorie: Supervised Learning
- Kategorie: Machine Learning
- Kategorie: Semantic Web
- Kategorie: Natural Language Processing
- Kategorie: Fraud detection
Wichtige Details

Zu Ihrem LinkedIn-Profil hinzufügen
September 2025
Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.

In diesem Kurs gibt es 3 Module
In this introductory lesson, learners will explore the core principles of zero-shot and few-shot learning, including how they In this introductory lesson, learners will explore the core principles of zero-shot and few-shot learning, including how they differ In this introductory lesson, learners will explore the core principles of zero-shot and few-shot learning, including how they differ from traditional supervised learning. Through clear examples and intuitive analogies, learners will build a foundational understanding of these approaches and why they matter in modern machine learning.understanding of these approaches and why they matter in modern machine learning.understanding of these approaches and why they matter in modern machine learning.
Das ist alles enthalten
3 Videos3 Lektüren1 Aufgabe1 Plug-in
In this lesson, learners will examine how pretrained models, semantic embeddings, and transfer learning enable generalization in low-data environments. They'll break down each component’s role through hands-on exercises and visualizations—gaining clarity on how models can recognize patterns or make predictions with minimal labeled data.
Das ist alles enthalten
4 Videos2 Lektüren1 Aufgabe1 Plug-in
In this lesson, learners will evaluate and apply zero-shot and few-shot strategies—such as prompt engineering, meta-learning, and prototypical networks—to real-world tasks. Through scenario-based activities and model comparisons, learners will learn how to choose and implement the right method based on data limitations and task requirements.
Das ist alles enthalten
4 Videos1 Lektüre3 Aufgaben1 Plug-in
Dozent

Mehr von Machine Learning entdecken
- Status: Kostenloser Testzeitraum
University of Washington
- Status: Kostenlos
Coursera Project Network
- Status: Kostenloser Testzeitraum
Edureka
Warum entscheiden sich Menschen für Coursera für ihre Karriere?





Neue Karrieremöglichkeiten mit Coursera Plus
Unbegrenzter Zugang zu 10,000+ Weltklasse-Kursen, praktischen Projekten und berufsqualifizierenden Zertifikatsprogrammen - alles in Ihrem Abonnement enthalten
Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.
Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online
Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.
Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.
Häufig gestellte Fragen
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you purchase a Certificate you get access to all course materials, including graded assignments. Upon completing the course, your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
You will be eligible for a full refund until two weeks after your payment date, or (for courses that have just launched) until two weeks after the first session of the course begins, whichever is later. You cannot receive a refund once you’ve earned a Course Certificate, even if you complete the course within the two-week refund period. See our full refund policy.
Weitere Fragen
Finanzielle Unterstützung verfügbar,
¹ Einige Aufgaben in diesem Kurs werden mit AI bewertet. Für diese Aufgaben werden Ihre Daten in Übereinstimmung mit Datenschutzhinweis von Courseraverwendet.