This course provides a hands-on journey into credit risk prediction using Python with a focus on logistic regression, decision trees, and ensemble methods. Learners will begin by outlining project workflows, importing data, and applying data preprocessing techniques such as handling missing values, encoding categorical features, and scaling numerical variables. Through exploratory data analysis (EDA), they will interpret data patterns and relationships to build stronger foundations for modeling.

Découvrez de nouvelles compétences avec 30 % de réduction sur les cours dispensés par des experts du secteur. Économisez maintenant.


Ce que vous apprendrez
Preprocess financial datasets using encoding, scaling, and EDA techniques.
Build and tune logistic regression, decision trees, and Random Forest models.
Evaluate credit risk models with confusion matrices, ROC curves, and ensemble methods.
Compétences que vous acquerrez
- Catégorie : Predictive Modeling
- Catégorie : Scikit Learn (Machine Learning Library)
- Catégorie : Performance Metric
- Catégorie : Classification And Regression Tree (CART)
- Catégorie : Performance Tuning
- Catégorie : Machine Learning Methods
- Catégorie : Predictive Analytics
- Catégorie : Credit Risk
- Catégorie : Random Forest Algorithm
- Catégorie : Supervised Learning
- Catégorie : Exploratory Data Analysis
- Catégorie : Pandas (Python Package)
- Catégorie : Financial Modeling
- Catégorie : Data Manipulation
- Catégorie : Risk Modeling
- Catégorie : Data Analysis
- Catégorie : Applied Machine Learning
- Catégorie : Feature Engineering
- Catégorie : Data Processing
- Catégorie : Decision Tree Learning
Détails à connaître

Ajouter à votre profil LinkedIn
septembre 2025
6 devoirs
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées

Il y a 2 modules dans ce cours
In this module, learners gain a strong foundation in building a credit default prediction model using Python. The module introduces the project’s scope, outlines the workflow, and emphasizes the importance of structured data handling. Learners will explore data preprocessing techniques such as handling missing values, encoding categorical features, and scaling numerical variables. In addition, they will perform exploratory data analysis (EDA) to identify patterns, visualize distributions, and uncover key relationships within the dataset. Finally, learners will split the dataset into training and testing sets to ensure reliable evaluation of logistic regression models for predicting credit default risk.
Inclus
9 vidéos3 devoirs1 plugin
In this module, learners advance beyond data preparation into the core of predictive modeling. The module introduces evaluation metrics such as the confusion matrix and ROC curve to assess classification performance in credit default prediction. Learners will then explore hyperparameter tuning methods like Grid Search and Randomized Search to optimize logistic regression models. The module further builds knowledge with decision tree theory, covering splitting criteria, visualization using Graphviz, and practical implementation in Python. Finally, learners will apply ensemble techniques with Random Forest to reduce overfitting and improve model accuracy for robust credit risk prediction.
Inclus
10 vidéos3 devoirs
Obtenez un certificat professionnel
Ajoutez ce titre à votre profil LinkedIn, à votre curriculum vitae ou à votre CV. Partagez-le sur les médias sociaux et dans votre évaluation des performances.
En savoir plus sur Data Analysis
- Statut : Essai gratuit
University of Pennsylvania
- Statut : Prévisualisation
Starweaver
- Statut : Essai gratuit
Edureka
- Statut : Gratuit
Coursera Project Network
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?





Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à 10,000+ cours de niveau international, projets pratiques et programmes de certification prêts à l'emploi - tous inclus dans votre abonnement.
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you purchase a Certificate you get access to all course materials, including graded assignments. Upon completing the course, your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
You will be eligible for a full refund until two weeks after your payment date, or (for courses that have just launched) until two weeks after the first session of the course begins, whichever is later. You cannot receive a refund once you’ve earned a Course Certificate, even if you complete the course within the two-week refund period. See our full refund policy.
Plus de questions
Aide financière disponible,