In this course, you’ll explore three exploratory data analysis (EDA) practices: cleaning, joining, and validating. You'll discover the importance of these practices for data analysis, and you’ll use Python to clean, validate, and join data.



Clean Your Data
Dieser Kurs ist Teil von Spezialisierung für Google Data Analysis with Python

Dozent: Google Career Certificates
TOP-LEHRKRAFT
Bei enthalten
Was Sie lernen werden
Explore the EDA practices of cleaning, validating and joining data
Kompetenzen, die Sie erwerben
- Kategorie: Data Wrangling
Wichtige Details

Zu Ihrem LinkedIn-Profil hinzufügen
September 2025
5 Aufgaben
Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.

Erweitern Sie Ihre Fachkenntnisse
- Lernen Sie neue Konzepte von Branchenexperten
- Gewinnen Sie ein Grundverständnis bestimmter Themen oder Tools
- Erwerben Sie berufsrelevante Kompetenzen durch praktische Projekte
- Erwerben Sie ein Berufszertifikat zur Vorlage

In diesem Kurs gibt es 5 Module
Missing or duplicate data can appear in datasets for numerous reasons. The impact of missing values can vary depending on how many are present. In this module, you will learn strategies to address missing data entries, determine when deduplication is needed, and use common Python functions for handling duplicates.
Das ist alles enthalten
4 Videos1 Lektüre1 Aufgabe3 Unbewertete Labore
Outliers are data points that stand out amongst others. A tactful approach to outliers recognizes the human stories and real-world effects they represent. In this module, you will learn the types of outliers, how to handle them, and visualize them.
Das ist alles enthalten
2 Videos2 Lektüren1 Aufgabe
Data models typically work better with numerical inputs. To facilitate this, categorical data is encoded into numeric digits for analysis. In this module, you will learn why this transformation is needed, what dummy variables are, and how to select the right encoding method.
Das ist alles enthalten
2 Videos2 Lektüren1 Aufgabe
Input validation focuses on thoroughly checking data for completeness and to eliminate errors. In this module, you will learn why validation minimizes errors, how to detect improper inputs, and why it's essential for joining datasets.
Das ist alles enthalten
2 Videos1 Aufgabe2 Unbewertete Labore1 Plug-in
Review everything you’ve learned and take the final assessment.
Das ist alles enthalten
1 Lektüre1 Aufgabe
Erwerben Sie ein Karrierezertifikat.
Fügen Sie dieses Zeugnis Ihrem LinkedIn-Profil, Lebenslauf oder CV hinzu. Teilen Sie sie in Social Media und in Ihrer Leistungsbeurteilung.
Dozent

von
Mehr von Data Analysis entdecken
Coursera Project Network
- Status: Kostenloser Testzeitraum
Johns Hopkins University
- Status: Kostenloser Testzeitraum
Corporate Finance Institute
- Status: Kostenloser Testzeitraum
Warum entscheiden sich Menschen für Coursera für ihre Karriere?





Neue Karrieremöglichkeiten mit Coursera Plus
Unbegrenzter Zugang zu 10,000+ Weltklasse-Kursen, praktischen Projekten und berufsqualifizierenden Zertifikatsprogrammen - alles in Ihrem Abonnement enthalten
Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.
Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online
Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.
Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.
Häufig gestellte Fragen
Organizations of all types and sizes have business processes that generate massive volumes of data. Every moment, all sorts of information gets created by computers, the internet, phones, texts, streaming video, photographs, sensors, and much more. In the global digital landscape, data is increasingly imprecise, chaotic, and unstructured. As the speed and variety of data increases exponentially, organizations are struggling to keep pace.
Data science is part of a field of study that uses raw data to create new ways of modeling and understanding the unknown. To gain insights, businesses rely on data professionals to acquire, organize, and interpret data, which helps inform internal projects and processes. Data scientists rely on a combination of critical skills, including statistics, scientific methods, data analysis, and artificial intelligence.
A data professional is a term used to describe any individual who works with data and/or has data skills. At a minimum, a data professional is capable of exploring, cleaning, selecting, analyzing, and visualizing data. They may also be comfortable with writing code and have some familiarity with the techniques used by statisticians and machine learning engineers, including building models, developing algorithmic thinking, and building machine learning models.
Data professionals are responsible for collecting, analyzing, and interpreting large amounts of data within a variety of different organizations. The role of a data professional is defined differently across companies. Generally speaking, data professionals possess technical and strategic capabilities that require more advanced analytical skills such as data manipulation, experimental design, predictive modeling, and machine learning. They perform a variety of tasks related to gathering, structuring, interpreting, monitoring, and reporting data in accessible formats, enabling stakeholders to understand and use data effectively. Ultimately, the work of data professionals helps organizations make informed, ethical decisions.
Large volumes of data — and the technology needed to manage and analyze it — are becoming increasingly accessible. Because of this, there has been a surge in career opportunities for people who can tell stories using data, such as senior data analysts and data scientists. These professionals collect, analyze, and interpret large amounts of data within a variety of different organizations. Their responsibilities require advanced analytical skills such as data manipulation, experimental design, predictive modeling, and machine learning.
Weitere Fragen
Finanzielle Unterstützung verfügbar,