By the end of this course, learners will be able to define the fundamentals of forecasting, classify forecasting methods, apply regression and decomposition techniques, and implement advanced models like ARIMA and SARIMA to accurately predict time-dependent data.



Was Sie lernen werden
Define forecasting fundamentals and classify methods for time-dependent data.
Apply regression, decomposition, and exponential smoothing in R.
Implement ARIMA and SARIMA models with ACF/PACF diagnostics for accuracy.
Kompetenzen, die Sie erwerben
- Kategorie: Time Series Analysis and Forecasting
- Kategorie: Statistical Methods
- Kategorie: Predictive Analytics
- Kategorie: R Programming
- Kategorie: Statistical Modeling
- Kategorie: Forecasting
- Kategorie: Analysis
- Kategorie: Statistical Analysis
- Kategorie: Predictive Modeling
- Kategorie: Exploratory Data Analysis
- Kategorie: Regression Analysis
- Kategorie: Business Analytics
- Kategorie: Advanced Analytics
- Kategorie: Trend Analysis
Wichtige Details

Zu Ihrem LinkedIn-Profil hinzufügen
September 2025
11 Aufgaben
Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.

In diesem Kurs gibt es 3 Module
This module introduces learners to the fundamental principles of forecasting within the field of business analytics. It explains the purpose and scope of forecasting, explores different forecasting methods, and highlights common challenges businesses face when predicting future trends. Learners will also gain practical insights into simple forecasting approaches, transformations, and accuracy evaluation techniques, building a strong foundation for advanced forecasting models.
Das ist alles enthalten
12 Videos4 Aufgaben1 Plug-in
This module explores how regression techniques and decomposition methods can be applied to time series forecasting. Learners will gain an in-depth understanding of simple, multiple, and non-linear regression, the use of predictors and lagged variables, and the unique considerations of time series regression. The module also introduces decomposition approaches to separate time series into trend, seasonal, cyclical, and irregular components, helping learners build accurate and interpretable forecasting models in R.
Das ist alles enthalten
12 Videos4 Aufgaben
This module focuses on advanced time series forecasting techniques, including exponential smoothing, ARIMA, and Seasonal ARIMA models. Learners will explore the theoretical foundations and practical applications of autoregressive and moving average models, understand the role of ACF and PACF in model selection, and learn how to handle seasonal and non-seasonal time series data. By mastering these advanced methods, learners will be able to build robust and accurate forecasting models in R that address both short-term fluctuations and long-term seasonal trends.
Das ist alles enthalten
8 Videos3 Aufgaben
Mehr von Data Analysis entdecken
- Status: Kostenloser Testzeitraum
Coursera Instructor Network
- Status: Vorschau
The State University of New York
Coursera Project Network
Warum entscheiden sich Menschen für Coursera für ihre Karriere?





Neue Karrieremöglichkeiten mit Coursera Plus
Unbegrenzter Zugang zu 10,000+ Weltklasse-Kursen, praktischen Projekten und berufsqualifizierenden Zertifikatsprogrammen - alles in Ihrem Abonnement enthalten
Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.
Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online
Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.
Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.
Häufig gestellte Fragen
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you purchase a Certificate you get access to all course materials, including graded assignments. Upon completing the course, your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
You will be eligible for a full refund until two weeks after your payment date, or (for courses that have just launched) until two weeks after the first session of the course begins, whichever is later. You cannot receive a refund once you’ve earned a Course Certificate, even if you complete the course within the two-week refund period. See our full refund policy.
Weitere Fragen
Finanzielle Unterstützung verfügbar,