This beginner-friendly course provides a comprehensive introduction to logistic regression, one of the most widely used techniques in data science and analytics. Learners will explain regression fundamentals, differentiate probability prediction methods, and analyze logistic regression key concepts including logit transformation, odds interpretation, and Maximum Likelihood Estimation (MLE).

il reste 3 jours : Découvrez de nouvelles compétences avec 30% de réduction sur les cours dispensés par des experts du secteur. Économisez maintenant.


Ce que vous apprendrez
Explain logistic regression fundamentals, logit transformation, and odds interpretation.
Apply SAS PROC LOGISTIC for variable selection and predictive modeling.
Evaluate model performance using chi-square tests, concordance, and fit measures.
Compétences que vous acquerrez
- Catégorie : Business Analytics
- Catégorie : Estimation
- Catégorie : Analytics
- Catégorie : Statistical Analysis
- Catégorie : Probability
- Catégorie : Regression Analysis
- Catégorie : SAS (Software)
- Catégorie : Statistical Methods
- Catégorie : Logistics
- Catégorie : Data Transformation
- Catégorie : Predictive Modeling
Détails à connaître

Ajouter à votre profil LinkedIn
septembre 2025
6 devoirs
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées

Il y a 2 modules dans ce cours
This module introduces learners to the fundamentals of regression and lays the groundwork for understanding logistic regression. Beginning with an overview of regression analysis, the module explores how dependent and independent variables interact, the role of coefficients, and the importance of error terms in modeling. Learners will examine practical applications of regression in real-world problem-solving and policymaking. The module then transitions into different probability prediction methods, highlighting when and why logistic regression is more appropriate than ordinary least squares (OLS). By the end, learners will have a solid conceptual foundation for applying logistic regression to binary outcomes in analytics and decision-making contexts.
Inclus
8 vidéos3 devoirs
This module deepens the learner’s understanding of logistic regression by focusing on key modeling concepts, practical approaches, and industry-standard methodologies. Learners will explore foundational ideas such as observation periods, validation samples, and outlier treatment before moving into logistic regression’s core principles, including the logit transformation, odds-to-probability conversion, and the importance of Maximum Likelihood Estimation (MLE). The module introduces practical approaches such as the Binning, Continuous, and Dummy Variable methods to improve model stability. Learners will then engage with SAS-based methodologies for variable selection, PROC LOGISTIC procedures, and evaluation techniques such as concordant/discordant pairs and global vs local measures of model fit. By the end of this module, learners will have the applied knowledge to build, evaluate, and refine logistic regression models in real-world data science and analytics contexts.
Inclus
7 vidéos3 devoirs
En savoir plus sur Data Analysis
- Statut : Essai gratuit
- Statut : Essai gratuit
University of Michigan
- Statut : Essai gratuit
University of Colorado Boulder
- Statut : Essai gratuit
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?





Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à 10,000+ cours de niveau international, projets pratiques et programmes de certification prêts à l'emploi - tous inclus dans votre abonnement.
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you purchase a Certificate you get access to all course materials, including graded assignments. Upon completing the course, your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
You will be eligible for a full refund until two weeks after your payment date, or (for courses that have just launched) until two weeks after the first session of the course begins, whichever is later. You cannot receive a refund once you’ve earned a Course Certificate, even if you complete the course within the two-week refund period. See our full refund policy.
Plus de questions
Aide financière disponible,